La fibra de carbono (FC) se desarrolló inicialmente para la industria espacial, pero ahora, al bajar de precio, se ha extendido a otros campos: la industria del transporte, aeronáutica, al deporte de alta competición y, últimamente encontramos la FC hasta en carteras de bolsillo y relojes. La FC está compuesta por muchos hilos de carbono en forma de hebra. Existen muchas clases de FC con propiedades diversas, adaptadas a muchas aplicaciones.
Para hacernos una idea, basta comparar la FC con el acero:
Característica FC Acero
Mód. de resistencia a la tracción 3,5 1,3
Resistencia específica 2,0 0,17
Densidad 1,75 7,9
Su resistencia es casi 3 veces superior a la del acero, y su densidad es 4,5 veces menor.
En cuanto a módulo de elasticidad hay una amplia gama de FC desde 240 hasta 400.
Otras propiedades muy apreciables en la fibra de carbono son la resistencia a la corrosión, al fuego e inercia química y la conductividad eléctrica. Ante variaciones de temperatura conserva su forma.
Es un caso común de metonimia, en el cual se le da al todo el nombre de una parte: el nombre de las FC que refuerzan la matriz de resina.
La fibra de carbono es un polímero convertido en fibra. En la mayoría de los casos, las FC permanecen como carbón no grafítico. El término fibra de grafito solo está justificado, cuando las FC han sido sometidas a un tratamiento térmico de grafitización (2000-3000 ºC),que les confiere un orden cristalino tridimensional, observable mediante rayos X.
La cristalografía de rayos X nos permite conocer la estructura exacta de cada tipo de FC. Nos resulta extraño, pero nos recuerda mucho al grafito: una estructura hexagonal. El grafito, la mina de lápiz, es todo lo contrario: blando y frágil. Es un alótropo del carbono.
A nivel atómico no podemos comprender las diferencias entre la fibra de carbono y el grafito, pero la estructura es diferente: observamos muchos cambios en la superposición de las fibras y las cintas en la FC y en el grafito.
El grafito tiene una estructura plana triangula con enlaces triples y queda un electrón libre. Este electrón libre explica que el grafito es una de las pocas estructuras no metálicas que conducen la electricidad. La fibra de carbono también es conductora.
Para hacernos una idea, basta comparar la FC con el acero:
Característica FC Acero
Mód. de resistencia a la tracción 3,5 1,3
Resistencia específica 2,0 0,17
Densidad 1,75 7,9
Su resistencia es casi 3 veces superior a la del acero, y su densidad es 4,5 veces menor.
En cuanto a módulo de elasticidad hay una amplia gama de FC desde 240 hasta 400.
Otras propiedades muy apreciables en la fibra de carbono son la resistencia a la corrosión, al fuego e inercia química y la conductividad eléctrica. Ante variaciones de temperatura conserva su forma.
Es un caso común de metonimia, en el cual se le da al todo el nombre de una parte: el nombre de las FC que refuerzan la matriz de resina.
La fibra de carbono es un polímero convertido en fibra. En la mayoría de los casos, las FC permanecen como carbón no grafítico. El término fibra de grafito solo está justificado, cuando las FC han sido sometidas a un tratamiento térmico de grafitización (2000-3000 ºC),que les confiere un orden cristalino tridimensional, observable mediante rayos X.
La cristalografía de rayos X nos permite conocer la estructura exacta de cada tipo de FC. Nos resulta extraño, pero nos recuerda mucho al grafito: una estructura hexagonal. El grafito, la mina de lápiz, es todo lo contrario: blando y frágil. Es un alótropo del carbono.
A nivel atómico no podemos comprender las diferencias entre la fibra de carbono y el grafito, pero la estructura es diferente: observamos muchos cambios en la superposición de las fibras y las cintas en la FC y en el grafito.
El grafito tiene una estructura plana triangula con enlaces triples y queda un electrón libre. Este electrón libre explica que el grafito es una de las pocas estructuras no metálicas que conducen la electricidad. La fibra de carbono también es conductora.